Saturday, 14 January 2017

Gleitender Durchschnitt C ++

Ist es möglich, einen gleitenden Durchschnitt in C ohne die Notwendigkeit für ein Fenster von Proben Ive gefunden, dass ich ein bisschen optimieren kann, indem Sie eine Fenstergröße, die eine Macht von zwei für Bit-Verschiebung statt zu teilen, aber nicht brauchen zu ermöglichen Ein Puffer wäre schön. Gibt es eine Möglichkeit, ein neues gleitendes Durchschnittsergebnis nur als Funktion des alten Ergebnisses und des neuen Beispiels auszudrücken, definieren Sie einen beispielhaften gleitenden Durchschnitt in einem Fenster von 4 Proben: Add new sample e: Ein gleitender Durchschnitt kann rekursiv implementiert werden , Aber für eine exakte Berechnung des gleitenden Durchschnitts müssen Sie sich an die älteste Eingangsabfrage in der Summe (dh die a in Ihrem Beispiel) erinnern. Für einen N-gleitenden Durchschnitt berechnen Sie: wobei yn das Ausgangssignal und xn das Eingangssignal ist. Gl. (1) können rekursiv geschrieben werden, also müssen Sie sich stets an die Stichprobe xn-N erinnern, um (2) zu berechnen. Wie von Conrad Turner angemerkt, können Sie stattdessen ein (unendlich langes) exponentielles Fenster verwenden, mit dem Sie die Ausgabe nur aus dem vergangenen Ausgang und dem aktuellen Eingang berechnen können. Dies ist jedoch kein normaler (ungewichteter) gleitender Durchschnitt, sondern ein exponentieller Wert Gewogenen gleitenden Durchschnitt, wo die Proben in der Vergangenheit ein geringeres Gewicht erhalten, aber (zumindest in der Theorie) man nie etwas vergessen (die Gewichte nur kleiner und kleiner für Proben weit in der Vergangenheit). Ich habe einen gleitenden Durchschnitt ohne einzelnen Element-Speicher für ein GPS-Tracking-Programm, das ich geschrieben habe. Ich beginne mit 1 Probe und dividiere durch 1, um die aktuelle Durchschn. Ich füge dann anothe Probe und dividiere durch 2 zu den aktuellen Durchschn. Das geht so lange weiter, bis ich auf die Länge des Durchschnitts komme. Jedes Mal danach, füge ich in der neuen Probe, erhalten Sie den Durchschnitt und entfernen Sie diesen Durchschnitt aus der Gesamtmenge. Ich bin kein Mathematiker, aber das schien ein guter Weg, es zu tun. Ich dachte, es würde den Magen eines echten Mathematik-Kerl, aber es stellt sich heraus, es ist eine der akzeptierten Möglichkeiten, es zu tun. Und es funktioniert gut. Denken Sie daran, dass je höher Ihre Länge, desto langsamer folgt es, was Sie folgen wollen. Das kann nicht die meiste Zeit, aber wenn folgende Satelliten, wenn Sie langsam sind, könnte die Spur weit von der tatsächlichen Position und es wird schlecht aussehen. Sie könnten eine Lücke zwischen dem Sat und den nachfolgenden Punkten haben. Ich wählte eine Länge von 15 aktualisiert 6 mal pro Minute, um eine ausreichende Glättung und nicht zu weit von der tatsächlichen Sat-Position mit den geglätteten Spur Punkte erhalten. Antwort # 2 am: November 16, 2010, um 23:03 Uhr Initialisierung insgesamt 0, count0 (jedes Mal, wenn ein neuer Wert dann ein Eingang (scanf), ein add totalnewValue, ein Inkrement (count), ein dividieren Durchschnitt (totalcount) Dies wäre ein gleitender Durchschnitt über Alle Eingänge Um den Durchschnitt über nur die letzten 4 Eingänge zu berechnen, benötigen Sie 4 Inputvariablen, vielleicht kopieren Sie jeden Eingang zu einem älteren inputvariable und berechnen dann den neuen gleitenden Durchschnitt als Summe der 4 Inputvariablen, geteilt durch 4 (Rechtsverschiebung 2 wäre Gut, wenn alle Eingänge waren positiv, um die durchschnittliche Berechnung beantwortet werden 3. Februar um 4:06 Das wird tatsächlich berechnen den Gesamtdurchschnitt und nicht den gleitenden Durchschnitt. Wenn Zähler größer wird der Einfluss eines neuen Eingangsprobe wird verschwindend kleiner ndash Hilmar Feb Ich versuche, den gleitenden Durchschnitt eines Signals zu berechnen. Der Signalwert (ein Doppel) wird zu beliebigen Zeiten aktualisiert. Ich bin auf der Suche nach einem effizienten Weg, um seine Zeit gewichteten Durchschnitt zu berechnen Über ein Zeitfenster, in Echtzeit. Ich könnte es selbst tun, aber es ist schwieriger als ich dachte. Die meisten der Ressourcen Ive gefunden über das Internet berechnen gleitenden Durchschnitt des periodischen Signals, aber Mine Updates zu beliebigen Zeit. Kennt jemand gute Ressourcen für die Der Trick ist die folgende: Sie erhalten Updates zu beliebigen Zeiten über void update (int Zeit, float-Wert). Allerdings müssen Sie auch nachverfolgen, wenn ein Update fällt aus dem Zeitfenster, so dass Sie einen Alarm, der bei der Zeit N, die die vorherige Aktualisierung entfernt wird immer wieder in der Berechnung berücksichtigt. Wenn dies in Echtzeit geschieht, können Sie das Betriebssystem anfordern, einen Aufruf einer Methode void dropoffoldestupdate (int time) aufzurufen, die zum Zeitpunkt N aufgerufen werden soll. Wenn es sich um eine Simulation handelt, können Sie keine Hilfe vom Betriebssystem bekommen und müssen dies tun Tun Sie es manuell. In einer Simulation würden Sie Methoden mit der angegebenen Zeit als Argument aufrufen (was nicht mit der Echtzeit korreliert). Eine vernünftige Annahme ist jedoch, dass die Anrufe so gewartet werden, dass die Zeitargumente zunehmen. In diesem Fall müssen Sie eine sortierte Liste der Alarmzeitwerte pflegen und bei jedem Aktualisierungs - und Leseaufruf überprüfen, ob das Zeitargument größer ist als der Kopf der Alarmliste. Während es größer ist, tun Sie die alarmbezogene Verarbeitung (Drop off der ältesten Aktualisierung), entfernen Sie den Kopf und überprüfen Sie erneut, bis alle Alarme vor der angegebenen Zeit verarbeitet werden. Anschließend den Update-Aufruf durchführen. Ich habe bis jetzt angenommen, dass es offensichtlich ist, was Sie für die tatsächliche Berechnung tun würden, aber ich erarbeiten gerade für den Fall. Ich nehme an, Sie haben eine Methode float read (int Zeit), die Sie verwenden, um die Werte zu lesen. Das Ziel ist, diesen Anruf so effizient wie möglich zu machen. So berechnen Sie den gleitenden Durchschnitt nicht jedes Mal, wenn die Lesemethode aufgerufen wird. Stattdessen müssen Sie den Wert der letzten Aktualisierung oder des letzten Alarms vorberechnen und diesen Wert durch ein paar Gleitkommaoperationen anpassen, um die Zeit seit der letzten Aktualisierung zu berücksichtigen. (D. h. eine konstante Anzahl von Operationen, außer dass möglicherweise eine Liste von aufgestauten Alarmen verarbeitet wird). Hoffentlich ist dies klar - das sollte ein ganz einfacher Algorithmus und sehr effizient sein. Weitere Optimierung. Einer der verbleibenden Probleme ist, wenn eine große Anzahl von Updates innerhalb des Zeitfensters auftreten, dann gibt es eine lange Zeit, für die es weder liest noch Updates, und dann ein Lesen oder Update kommt entlang. In diesem Fall ist der obige Algorithmus ineffizient, wenn der Wert für jedes der Aktualisierungen, die herunterfallen, inkremental aktualisiert wird. Dies ist nicht notwendig, weil wir nur kümmern uns um die letzte Aktualisierung über das Zeitfenster so, wenn es einen Weg, um effizient drop off alle älteren Updates, würde es helfen. Um dies zu tun, können wir den Algorithmus ändern, um eine binäre Suche nach Updates durchzuführen, um das neueste Update vor dem Zeitfenster zu finden. Wenn es relativ wenige Updates gibt, die gelöscht werden müssen, dann kann man den Wert für jedes heruntergelassene Update inkremental aktualisieren. Aber, wenn es viele Updates gibt, die gelöscht werden müssen, dann kann man den Wert vom Kratzer neu berechnen, nachdem er weg von den alten Updates. Anhang auf Inkrementelle Berechnung: Ich sollte klären, was ich meine durch inkrementelle Berechnung oben in den Satz zwicken diesen Wert durch ein paar Gleitkomma-Operationen, um für den Ablauf der Zeit seit dem letzten Update. Initiale nicht-inkrementelle Berechnung: dann über die relevanten Aktualisierungen in der Reihenfolge der zunehmenden Zeit iterieren: movingaverage (sum lastupdate timesincelastupdate) windowlength. Nun, wenn genau ein Update fällt aus dem Fenster, aber keine neuen Updates eintreffen, stellen Sie die Summe als: (beachten Sie, es ist Priorupdate, deren Timestamp geändert, um den Beginn der letzten Fenster beginnt). Und wenn genau ein Update in das Fenster eintritt, aber keine neuen Updates abfallen, passen Sie die Summe als an: Wie offensichtlich sein sollte, ist dies eine grobe Skizze, aber hoffentlich zeigt es, wie Sie den Durchschnitt so halten können, dass es O (1) Operationen pro Update ist Auf amortisierte Basis. Aber beachten Sie weitere Optimierung im vorherigen Absatz. Beachten Sie auch Stabilitätsprobleme, auf die in einer älteren Antwort hingewiesen wird, was bedeutet, dass Gleitkomma-Fehler über eine große Anzahl derartiger Inkrementierungsoperationen akkumulieren können, so dass es eine Abweichung von dem Ergebnis der Vollberechnung gibt, die für die Anwendung signifikant ist. Wenn eine Annäherung OK und theres eine minimale Zeit zwischen Proben ist, könnten Sie versuchen, Super-Sampling. Sie haben ein Array, das gleichmäßig beabstandete Zeitintervalle repräsentiert, die kürzer als das Minimum sind, und zu jedem Zeitpunkt die letzte empfangene Probe speichern. Je kürzer das Intervall, desto näher ist der Mittelwert auf den wahren Wert. Der Zeitraum sollte nicht größer als die Hälfte des Minimums sein, oder es besteht die Möglichkeit, eine Stichprobe zu fehlen. Antwortete Dec 15 11 at 18:12 antwortete 15 Dez, um 22:38 Uhr Danke für die Antwort. Eine Verbesserung, die erforderlich wäre, um tatsächlich Quotecachequot den Wert des Gesamtdurchschnitts, so dass wir don39t Schleife die ganze Zeit. Auch kann es ein kleiner Punkt sein, aber wäre es nicht effizienter, ein deque oder eine Liste zu verwenden, um den Wert zu speichern, da wir davon ausgehen, dass die Aktualisierung in der richtigen Reihenfolge kommen wird. Einfügen wäre schneller als in der Karte. Ndash Arthur Ja, Sie könnten den Wert der Summe zwischenspeichern. Subtrahieren Sie die Werte der Proben, die Sie löschen, fügen Sie die Werte der Proben, die Sie einfügen. Auch, ja, ein dequeltpairltSample, Dategtgt könnte effizienter sein. Ich wählte Karte für Lesbarkeit, und die Leichtigkeit der Aufruf der Karte :: upperbound. Wie immer, schreiben Sie den richtigen Code zuerst, dann Profil und messen inkrementelle Änderungen. Ndash Rob Dez 16 11 um 15:00 Hinweis: Anscheinend ist dies nicht der Weg, um dies zu nähern. Lassen Sie es hier als Referenz auf, was ist falsch mit diesem Ansatz. Überprüfen Sie die Kommentare. AKTUALISIERT - basierend auf Olis Kommentar. Nicht sicher über die Instabilität, dass er aber reden. Verwenden Sie eine sortierte Karte der Ankunftszeiten mit Werten. Bei der Ankunft eines Wertes addieren Sie die Ankunftszeit zur sortierten Karte zusammen mit ihrem Wert und aktualisieren Sie den gleitenden Durchschnitt. Warnung dies ist Pseudocode: Dort. Nicht vollständig ausgefuellt, aber Sie bekommen die Idee. Dinge zu beachten. Wie ich schon sagte ist Pseudocode. Youll Notwendigkeit, eine passende Karte zu wählen. Entfernen Sie nicht die Paare, während Sie iterieren durch, wie Sie den Iterator ungültig machen und müssen wieder neu starten. Siehe Olis Kommentar unten auch. Antwort # 2 am: Dezember 15, 2010, um 12:22 Uhr Dies doesn39t Arbeit: es doesn39t berücksichtigen, welcher Anteil der Fensterlänge jeder Wert für vorhanden ist. Auch dieser Ansatz der Addition und dann Subtraktion ist nur stabil für Ganzzahl-Typen, nicht Floaten. Ndash Oliver Charlesworth OliCharlesworth - sorry Ich habe einige wichtige Punkte in der Beschreibung (doppelt und zeitgewichtet) verpasst. Ich werde aktualisieren. Vielen Dank. Ndash Dennis Dec 15 11 at 12:33 Die Zeitgewichtung ist ein weiteres Problem. Aber das ist nicht das, worüber ich rede. Ich bezog sich auf die Tatsache, dass, wenn ein neuer Wert zuerst das Zeitfenster betritt, sein Beitrag zum Durchschnitt minimal ist. Ihr Beitrag steigt, bis ein neuer Wert eintritt. Ndash Oliver Charlesworth 15. Dezember um 12: 35 Ich weiß, dies ist mit boost wie pro erreichbar: Aber ich möchte wirklich vermeiden, mit Boost. Ich habe gegoogelt und keine geeigneten oder lesbaren Beispiele gefunden. Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahlstroms mit den letzten 1000 Zahlen als Datenprobe verfolgen. Was ist der einfachste Weg, um dies zu erreichen, experimentierte ich mit einem kreisförmigen Array, exponentiellen gleitenden Durchschnitt und einem einfacheren gleitenden Durchschnitt und festgestellt, dass die Ergebnisse aus dem kreisförmigen Array meine Bedürfnisse am besten geeignet. Wenn Ihre Bedürfnisse sind einfach, können Sie nur versuchen, mit einem exponentiellen gleitenden Durchschnitt. Setzen Sie einfach, Sie eine Akkumulator-Variable, und wie Ihr Code sieht auf jede Probe, aktualisiert der Code den Akkumulator mit dem neuen Wert. Sie wählen eine konstante Alpha, die zwischen 0 und 1 ist, und berechnen Sie: Sie müssen nur einen Wert von Alpha zu finden, wo die Wirkung einer gegebenen Probe nur für etwa 1000 Proben dauert. Hmm, Im nicht wirklich sicher, dass dies für Sie geeignet ist, jetzt, dass Ive es hier. Das Problem ist, dass 1000 ist ein ziemlich langes Fenster für einen exponentiellen gleitenden Durchschnitt Im nicht sicher, gibt es ein Alpha, die den Durchschnitt über die letzten 1000 Zahlen, ohne Unterlauf in der Gleitkomma Berechnung. Aber, wenn Sie einen kleineren Durchschnitt wünschen, wie 30 Zahlen oder so, dieses ist eine sehr einfache und schnelle Weise, es zu tun. Beantwortet Jun 12 12 at 4:44 1 auf Ihrem Beitrag. Der exponentielle gleitende Durchschnitt kann zulassen, dass das Alpha variabel ist. Somit kann dies dazu verwendet werden, Zeitbasisdurchschnitte (z. B. Bytes pro Sekunde) zu berechnen. Wenn die Zeit seit dem letzten Akkumulator-Update mehr als 1 Sekunde beträgt, lassen Sie Alpha 1.0 sein. Andernfalls können Sie Alpha zulassen (usecs seit letztem update1000000). Ndash jxh Grundsätzlich möchte ich den gleitenden Durchschnitt eines laufenden Stroms eines Gleitkommazahls mit den neuesten 1000 Zahlen als Datenbeispiel zu verfolgen. Beachten Sie, dass im Folgenden die Summe als Elemente als addiert ergänzt wird, wobei kostspielige O (N) - Transversionen vermieden werden, um die Summe zu berechnen, die für den durchschnittlichen Bedarf erforderlich ist. Insgesamt wird ein anderer Parameter von T gebildet, um z. B. Mit einer langen langen, wenn insgesamt 1000 lange s, eine int für char s, oder eine doppelte bis total float s. Dies ist ein wenig fehlerhaft, dass Nennsignale an INTMAX vorbeiziehen könnten - wenn Sie darauf achten, dass Sie ein langes langes nicht signiertes verwenden konnten. Oder verwenden Sie ein zusätzliches Bool-Datenelement, um aufzuzeichnen, wenn der Container zuerst gefüllt wird, während numsamples rund um das Array (am besten dann umbenannt etwas harmlos wie pos). Man nehme an, daß der quadratische Operator (T-Abtastwert) tatsächlich quadratischer Operator (T-Abtastwert) ist. Ndash oPless Jun 8 14 um 11:52 Uhr oPless ahhh. Gut beobachtet. Eigentlich meinte ich, dass es sich um void operator () (T sample) handelt, aber natürlich könntet ihr auch irgendeine Notation verwenden, die ihr mochtet. Wird beheben, danke. Ndash Tony D Jun 14 14 am 14:27


No comments:

Post a Comment